DIVISION

Reception:

EHLT are implementing Mastering Number at Reception in September 2024.
The programme aims to secure firm foundations in the development of good number sense for all children from Reception through to Year 1 and Year 2. The aim over time is that children will leave KS1 with fluency in calculation and a confidence and flexibility with number. Attention will be given to key knowledge and understanding needed in Reception classes, and progression through KS1 to support success in the future. Over the year, the children will experience using a range of resources and representations.

Research shows that children with secure 'number sense' early on will make more progress later on in maths and across the curriculum.

DIVISION KEY VOCABULARY					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
share; share equally; one each; two each; groups; groups of; lots of; array	share; share equally; one each; two each; groups; groups of; lots of; array; divide; divided by; divided into; division; grouping; number line;	share; share equally; one each; two each; groups; groups of; lots of; array; divide; divided by; divided into; division; grouping; number line; left; left over	share; share equally; one each; two each; groups; groups of; lots of; array; divide; divided by; divided into; division; grouping; number line; left; left over; inverse; remainder;	share; share equally; one each; two each; groups; groups of; lots of; array; divide; divided by; divided into; division; grouping; number line; left; left over; inverse; remainder; regroup; carry; multiple; short division; divisible by; factor; quotient; prime number; prime factors; composite numbers;	share; share equally; one each; two each; groups; groups of; lots of; array; divide; divided by; divided into; division; grouping; number line; left; left over; inverse; remainder; regroup; carry; multiple; short division; divisible by; factor; quotient; prime number; prime factors; composite numbers; common factors

*This vocabulary is not an exhaustive list. Teachers will use recommended NCETM vocabulary in lessons.

	REAL-LIFE REPRESENTATION	OTHER REPRESENTATION
Halving and sharing	Children explore halving and sharing through practical sharing using real life scenarios including sharing fruit or classroom equipment.	Children use five frames to share amounts fairly and to check that the groups are equal. They share the counters/cubes one by one.
	Half of 8 is 4.	Half of 6 is 3.

	CONCRETE	PICTORIAL	ABSTRACT
Grouping	Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether. There are 2 in each group. There are 5 groups.	Represent a whole and work out how many equal groups. There are 10 in total. There are 5 in each group. There are 2 groups.	Children may relate this to counting back in steps of 2, 5 or 10.
Sharing	Share a set of objects into equal parts and work out how many are in each part.	Sketch or draw to represent sharing into equal parts. This may be related to fractions.	10 shared into 2 equal groups gives 5 in each group.

Learning Trust

	CONCRETE	PICTORIAL	ABSTRACT
Sharing equally	Start with a whole and share into equal parts, one at a time. 12 shared equally between 2. They get 6 each. Start to understand how this also relates to grouping. To share equally between 3 people, take a group of 3 and give 1 to each person. Keep going until all the objects have been shared They get 5 each. 15 shared equally between 3. They get 5 each.	Represent the objects shared into equal parts using a bar model. 20 shared into 5 equal parts. There are 4 in each part.	Use a bar model to support understanding of the division. $18 \div 2=9$

Maths Mastery Policy

Grouping equally	Understand how to make equal groups from a whole. 0.02500 \square $\rightarrow 0$ \square \square 8 divided into 4 equal groups. There are 2 in each group.	Understand the relationship between grouping and the division statements. $12 \div 3=4$ $12 \div 4=3$ $12 \div 6=2$ $12 \div 2=6$	Understand how to relate division by grouping to repeated subtraction. There are 4 groups now. 12 divided into groups of 3. $12 \div 3=4$ There are 4 groups.
Using known times-tables to solve divisions	Understand the relationship between multiplication facts and division. 4 groups of 5 cars is 20 cars in total. 20 divided by 4 is 5 .	Link equal grouping with repeated subtraction and known times-table facts to support division. 40 divided by 4 is 10. Use a bar model to support understanding of the link between times-table knowledge and division.	Relate times-table knowledge directly to division. $\begin{aligned} & 1 \times 10=10 \\ & 2 \times 10=20 \\ & 3 \times 10=30 \\ & 4 \times 10=40 \\ & 5 \times 10=50 \\ & 6 \times 10=60 \\ & 7 \times 10=70 \\ & 8 \times 10=80 \end{aligned}$ $\text { I used the } 10$ times-table to help me. $3 \times 10=30$ I know that 3 groups of 10 makes 30, so I know that 30 divided by 10 is 3. $3 \times 10=30 \text { so } 30 \div 10=3$

Learning Trust

Understanding remainders	Use equipment to understand that a remainder occurs when a set of objects cannot be divided equally any further． ｜｜｜｜｜｜｜｜｜｜｜｜｜ロロロ｜ There are 13 sticks in total． There are 3 groups of 4，with 1 remainder．	Use images to explain remainders． $22 \div 5=4$ remainder 2	Understand that the remainder is what cannot be shared equally from a set． $\begin{aligned} & 22 \div 5=? \\ & 3 \times 5=15 \\ & 4 \times 5=20 \end{aligned}$ $5 \times 5=25 \ldots$ this is larger than 22 So， $22 \div 5=4$ remainder 2
Using known facts to divide multiples of 10	Use place value equipment to understand how to divide by unitising． Make 6 ones divided by 3. Now make 6 tens divided by 3. What is the same？What is different？	Divide multiples of 10 by unitising． 12 tens shared into 3 equal groups． 4 tens in each group．	Divide multiples of 10 by a single digit using known times－tables． $180 \div 3=?$ 180 is 18 tens． 18 divided by 3 is 6 ． 18 tens divided by 3 is 6 tens． $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$

2－digit number divided by	Children explore dividing 2－digit numbers by using place value equipment．	Children explore which partitions support particular divisions．
no remainders		42
	サाIाIT	$40 \text { 2 }$
	$48 \div 2=?$	
	First divide the 10s．	I need to partition 42 differently to divide by 3.
		42
	Then divide the $\mathbf{1 s}$ ．	
	ロ日 日 日昌日	$42=30+12$ $42 \div 3=14$

Children partition a number into 10 s and 1 s to divide where appropriate．

$60 \div 2=30$
$8 \div 2=4$
$30+4=34$
$68 \div 2=34$
Children partition flexibly to divide where appropriate．
$42 \div 3=$ ？
$42=40+2$

I need to partition 42 differently to divide by 3.
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$
$42 \div 3=14$

2－digit number divided by 1－digit number， with remainders	Use place value equipment to understand the concept of remainder． Make 29 from place value equipment． Share it into 2 equal groups． \square \square There are two groups of 14 and 1 remainder．	Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$ \square $29 \div 2=14 \text { remainder } 1$	Partition to divide，understanding the remainder in context． 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$ $17 \div 5=3 \text { remainder } 2$ $67 \div 5=13 \text { remainder } 2$ There are 13 children in each line and 2 children left out．

Learning Trust

	CONCRETE	PICTORIAL	ABSTRACT
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4. 24 is 4 groups of 6 . 24 divided by 6 is 4. 24 divided by 4 is 6 .	Represent divisions using an array. $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \\ & 5=35 \div 7 \end{aligned}$
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	Represent divisions using place value equipment. $90 \div 3=\square$ $900 \div 3=\square$ $9 \div 3=3$ 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	Use known facts to divide 10s and 100s by a single digit. $15 \div 3=5$ $150 \div 3=50$ $1500 \div 3=500$

Dividing 2digit and 3digit numbers by a single digit by partitioning into 100s, 10s and 1s	Partition into 10s and 1s to divide where appropriate. $39 \div 3=?$ $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \\ 39 \div 3=13 \end{gathered}$	Partition into 100s, 10s and 1s using Base 10 equipment to divide where appropriate. $39 \div 3=?$ 3 groups of I ten $39=30+9$ $30 \div 3=10$ $9 \div 3=3$ $39 \div 3=13$	Partition into 100s, 10s and 1s using a partwhole model to divide where appropriate. $142 \div 2=?$ $\begin{gathered} 100 \div 2=50 \\ 40 \div 2=20 \\ 6 \div 2=3 \\ 50+20+3=73 \\ 142 \div 2=73 \end{gathered}$
Dividing 2digit and 3digit numbers by a single digit, using flexible partitioning	Use place value equipment to explore why different partitions are needed. $42 \div 3=?$ I will split it into 30 and 12, so that I can divide by 3 more easily. \square	Represent how to partition flexibly where needed. $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7. $84 \div 7=12$	Make decisions about appropriate partitioning based on the division required. Understand that different partitions can be used to complete the same division.

Understanding remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups
There are 24, and 1 that cannot be shared.	

Understand how partitioning can reveal remainders of divisions.

$80 \div 4=20$
$12 \div 4=3$
$95 \div 4=23$ remainder 3

ABSTRACT

	CONCRETE	PICTORIAL	ABSTRACT
Understanding factors and prime numbers	Use equipment to explore the factors of a given number. 00000000 0000000 00000000 $\begin{aligned} & 24 \div 3=8 \\ & 24 \div 8=3 \end{aligned}$ 8 and 3 are factors of 24 because they divide 24 exactly. $24 \div 5=4$ remainder 4 . 5 is not a factor of 24 because there is a remainder.	Understand that prime numbers are numbers with exactly two factors. $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ 1 and 13 are the only factors of 13. 13 is a prime number.	Understand how to recognise prime and composite numbers. I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33. I know that 1 is not a prime number, as it has only 1 factor.
Understanding inverse operations and the link with multiplication, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have $\mathbf{2 8}$ counters. I made 7 groups of 4. There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3=$ $12 \div$ \square $=3$ \square $\times 3=12$ \square $\div 3=12$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$

Dividing whole numbers by 10, 100 and 1,000	Use place value equipment to support unitising for division. $4,000 \div 1,000$ 4,000 is 4 thousands. $4 \times 1,000=4,000$ So, $4,000 \div 1,000=4$
Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$

Understand how and why the digits change 100 or 1,000 .

$3,200 \div 100=$?

3,200 is 3 thousands and 2 hundreds.
$\div 100=2$
$3,000 \div 100=30$

So, the digits will move two places to the understanding of unitising. Use knowledge of the inverse relationship to check.
$=600$
$3,000 \div 50=60$
,000 $\div 500=6$
$5 \times 600=3,000$
$50 \times 60=3,000$
$500 \times 6=3,000$

Understanding the	
relationship between fractions and division	Use sharing to explore the link between fractions and division.
1 whole shared between 3 people.	
Each person receives one-third.	

Use a bar model and other fraction representations to show the link between fractions and division.

$$
\begin{array}{|c|l|}
\hline & \\
\hline 1 \div 3=\frac{1}{3}
\end{array}
$$

Use the link between division and fractions to calculate divisions.
$5 \div 4=\frac{5}{4}=1 \frac{1}{4}$
$11 \div 4=\frac{11}{4}=2 \frac{3}{4}$

