ADDITION

Reception:

EHLT are implementing Mastering Number at Reception in September 2024.
The programme aims to secure firm foundations in the development of good number sense for all children from Reception through to Year 1 and Year 2. The aim over time is that children will leave KS1 with fluency in calculation and a confidence and flexibility with number. Attention will be given to key knowledge and understanding needed in Reception classes, and progression through KS1 to support success in the future. Over the year, the children will experience using a range of resources and representations.

Research shows that children with secure 'number sense' early on will make more progress later on in maths and across the curriculum.

ADDITION KEY VOCABULARY					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
number bonds; number facts; Addition facts; Fact family; sum; total; whole; parts; plus; add; altogether; more; is equal to; is the same as as many as; Tens, ones; exchange; digit; one more; count on; double; most;	Add; count on; more; Plus; total; sum; partition; bridge; adjust; Inverse; number line; number facts; hundred; tens; ones; tens boundary; whole; parts; altogether; is equal to; is the same as; number bonds; number facts; fact families;	Calculation; calculate; addition; Sum; total; whole; part; column addition; ones; tens; hundreds; exchange/regroup; operation; estimate; inverse; hundreds boundary; increase; expanded; compact	Calculation; calculate; addition; Sum; total; whole; part; column addition; ones; tens; hundreds; thousands; exchange/regroup; operation; estimate; inverse; hundreds boundary; thousand boundary; increase; expanded; compact	Calculation; calculate; addition; Sum; total; whole; part; column addition; ones; tens; hundreds; thousands; exchange/regroup; operation; estimate; inverse; hundreds boundary; thousand boundary; increase; expanded; compact; decimal place; decimal point; tenths; hundredths; thousandths	Calculation; calculate; addition; Sum; total; whole; part; column addition; ones; tens; hundreds; thousands; exchange/regroup; operation; estimate; inverse; hundreds boundary; thousand boundary; increase; expanded; compact; decimal place; decimal point; tenths; hundredths; thousandths

*This vocabulary is not an exhaustive list. Teachers will use recommended NCETM vocabulary in lessons.

	REAL-LIFE REPRESENTATION	OTHER REPRESENTATION			
Counting and adding more (within 5)	Children add one more person or object to a group to find one more.	Children represent first, then, now stories on a five frame. They make the first number and then add one more.			
			(i)		
		Then			
	One more than 3 is 4.		(j)		
		Now			
			(i)	5	
		First, there are 3 bikes. Then, 1 more bike came. Now, there are 4 bikes.			

| Combining |
| :--- | :--- |
| groups to find |
| the whole |
| Children sort people and objects into parts and combine them to find | | Children use counters or cubes in a part-whole model to find the |
| :--- |
| whole. |
| Finding |
| number bonds 10 |

Adding by counting on

Children jump along a physical number track. They start at the larger number and count on the smaller number to find the total.

Children find the total number by counting on from the larger number.

Children use a number track and a counter. They start at the larger number and count on the smaller number to find the total.

Children make the larger number on the ten frames and then make the smaller number, counting on to find the total. They can use counters, cubes or other objects on the ten frames.

	CONCRETE	PICTORIAL	ABSTRACT
Counting and adding more	Children add one more person or object to a group to find one more.	Children add one more cube or counter to a group to represent one more. One more than 4 is 5.	Use a number line to understand how to link counting on with finding one more. One more than 6 is 7. 7 is one more than 6. Learn to link counting on with adding more than one. $5+3=8$
Understanding part-partwhole relationship	Sort people and objects into parts and understand the relationship with the whole. The parts are 2 and 4. The whole is 6.	Children draw to represent the parts and understand the relationship with the whole. The parts are 1 and 5. The whole is 6.	Use a part-whole model to represent the numbers. $6+4=10$ $6+4=10$

| Knowing and
 finding
 number bonds
 within 10 |
| :--- | :--- |
| to find and form number bonds. |

Adding by counting on	Children use knowledge of counting to 20 to find a total by counting on using people or objects.	Children use counters to support and represent their counting on strategy.	Children use number lines or number tracks to support their counting on strategy. $7+5=\square$
Adding the 1s	Children use bead strings to recognise how to add the 1 s to find the total efficiently. $\begin{aligned} & 2+3=5 \\ & 12+3=15 \end{aligned}$	Children represent calculations using ten frames to add a teen and 1 s . $\begin{aligned} & 2+3=5 \\ & 12+3=15 \\ & \hline \end{aligned}$	Children recognise that a teen is made from a 10 and some 1 s and use their knowledge of addition within 10 to work efficiently. $3+5=8$ So, $13+5=18$
Bridging the 10 using number bonds	Children use a bead string to complete a 10 and understand how this relates to the addition. 7 add 3 makes 10. So, 7 add 5 is 10 and 2 more.	Children use counters to complete a ten frame and understand how they can add using knowledge of number bonds to 10 .	Use a part-whole model and a number line to support the calculation. $9+4=13$

	CONCRETE	PICTORIAL	ABSTRACT
Understanding 10s and 1s	Group objects into 10s and 1s. Bundle straws to understand unitising of 10s.	Understand 10s and 1s equipment, and link with visual representations on ten frames.	Represent numbers on a place value grid, using equipment or numerals.
Adding 10s	Use known bonds and unitising to add 10s. (III) I know that $4+3=7$. So, 1 know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. / know that $4+3=7$. So, 1 know that 4 tens add 3 tens is 7 tens.	Use known bonds and unitising to add 10s. $\begin{aligned} & 4+3=\square \\ & 4+3=7 \\ & 4 \text { tens }+3 \text { tens }=7 \text { tens } \\ & 40+30=70 \end{aligned}$

Adding a 1-digit number to a 2-digit number not bridging a 10	Add the 1s to find the total. Use known bonds within 10. 41 is 4 tens and 1 one. 41 add 6 ones is 4 tens and 7 ones. This can also be done in a place value grid.	Add the 1s. 34 is 3 tens and 4 ones. 4 ones and 5 ones are 9 ones. The total is 3 tens and 9 ones.		Add the 1s. Understand the link between counting on and using known number facts. Children should be encouraged to use known number bonds to improve efficiency and accuracy. This can be represented horizontally or vertically.$34+5=39 \text { or }$ O 3 4 $+\quad 5$ 9
Adding a 1-digit number to a 2-digit number bridging 10	Complete a 10 using number bonds. There are 4 tens and 5 ones. I need to add 7. I will use 5 to complete a 10, then add 2 more.	Complete a 10 using number bo	nds. 0	Complete a 10 using number bonds. $\begin{aligned} & 7=5+2 \\ & 45+5+2=52 \end{aligned}$

Adding a multiple of 10 to a 2-digit number using columns	Add the 10s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10s using a place value grid to support. 16 is 1 ten and 6 ones. 30 is 3 tens. There are 4 tens and 6 ones in total.	Add the 10s represented vertically. Children must understand how the method relates to unitising of 10 s and place value. $\begin{aligned} & 1+3=4 \\ & 1 \text { ten }+3 \text { tens }=4 \text { tens } \\ & 16+30=46 \end{aligned}$
Adding two 2-digit numbers	Add the 10s and 1s separately. $5+3=8$ There are 8 ones in total. $3+2=5$ There are 5 tens in total. $35+23=58$	Add the 10s and 1s separately. Use a part-whole model to support. $\begin{aligned} & 11=10+1 \\ & 32+10=42 \\ & 42+1=43 \end{aligned}$ $32+11=43$	Add the 10s and the 1s separately, bridging 10s where required. A number line can support the calculations.

	CONCRETE	PICTORIAL	ABSTRACT
Understanding 100s	Understand the cardinality of 100, and the link with 10 tens. Use cubes to place into groups of 10 tens. - 3 (2) 10 (3) 훌 훌 20 (3) 3) 30 - (3) क (2) 50 () क (3) 30 - (3) (3) (3) 80 - * (t) 90 (4) (3) 100	Unitise 100 and count in steps of 100. 100 200 300	Represent steps of 100 on a number line and a number track and count up to 1,000 and back to 0 .
Understanding place value to 1,000	Unitise 100s, 10s and 1s to build 3-digit numbers.	Use equipment to represent numbers to 1,000. 200 240 Use a place value grid to support the structure of numbers to $\mathbf{1 , 0 0 0}$. Place value counters are used alongside other equipment. Children should understand how each counter represents a different unitised amount.	Represent the parts of numbers to 1,000 using a part-whole model. $215=200+10+5$ Recognise numbers to 1,000 represented on a number line, including those between intervals.

Learning Trust

Adding 100s	Use known facts and unitising to add multiples of 100. $3+2=5$ 3 hundreds +2 hundreds $=5$ hundreds $300+200=500$	Use known facts and unitising to add multiples of 100. $3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$		Use known facts and unitising to add multiples of 100. Represent the addition on a number line. Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$
3-digit number + 1s, no exchange or bridging	Use number bonds to add the 1s. 10 LOLLIES $214+4=?$ Now there are $4+4$ ones in total. $4+4=8$ $214+4=218$	Use number bo $\begin{aligned} & 245+4 \\ & 5+4=9 \\ & 245+4=249 \end{aligned}$	ds to add the 1s. Use number bonds to add the ls. $5+4=9$	Understand the link with counting on. Use number bonds to add the 1 s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1s. $5+4=9$ So, $245+4=249$

3－digit number＋ 1 s with exchange

Understand that when the 1s sum to 10 or more，this requires an exchange of 10 ones for 1 ten．

Children should explore this using unitised objects or physical apparatus．

Exchange 10 ones for 1 ten where needed． Use a place value grid to support the understanding．

H	T	O
		ロ9ロロם

$135+7=142$

Understand how to bridge by partitioning to the 1s to make the next 10.

Ensure that children understand how to add 1s bridging a 100.
$198+5=?$
$198+2+3=203$

3-digit number + 10s, no exchange	Calculate mentally by forming the number bond for the 10s. $234+50$ There are 3 tens and 5 tens altogether. $3+5=8$ In total there are 8 tens. $234+50=284$	Calculate mentally by for bond for the 10 s . $351+30=?$ $\begin{aligned} & 5 \text { tens }+3 \text { tens }=8 \text { tens } \\ & 351+30=381 \end{aligned}$	ming the num	ber	Calculate mentally by forming the number bond for the 10s. $753+40$ / know that $5+4=9$ $\text { So, } 50+40=90$
3-digit number + 10s, with exchange	Understand the exchange of 10 tens for 1 hundred. \square	Add by exchanging 10 te $184+20=?$ $184+20=204$	s for 1 hund		Understand how the addition relates to counting on in 10s across 100. $184+20=?$ I can count in 10s ... 194 ... 204 $184+20=204$ Use number bonds within 20 to support efficient mental calculations. $385+50$ There are 8 tens and 5 tens. That is 13 tens. $\begin{aligned} & 385+50=300+130+5 \\ & 385+50=435 \end{aligned}$

Use a place value grid to organise thinking
and adding of 1 s , then 10 s .

Represent the required exchange on a place value grid using equipment.

$$
275+16=?
$$

$275+16=291$
Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value.
Children should be encouraged at every stage to select methods that are accurate and efficient.

Represent the place value grid with equipment to model the stages of column addition.

Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.

Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation.
$275+16=291$

Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation.

	CONCRETE	PICTORIAL	ABSTRACT
Understanding numbers to $10,000$	Use place value equipment to understand the place value of 4 -digit numbers. 4 thousands equal 4,000. 1 thousand is 10 hundreds.	Represent numbers using place value counters once children understand the relationship between 1,000 s and 100 s. $2,000+500+40+2=2,542$	Understand partitioning of 4-digit numbers, including numbers with digits of 0 . $5,000+60+8=5,068$ Understand and read 4-digit numbers on a number line.
Choosing mental methods where appropriate	Use unitising and known facts to support mental calculations. Make 1,405 from place value equipment. Add 2,000. Now add the 1,000s. 1 thousand + 2 thousands = 3 thousands $1,405+2,000=3,405$	Use unitising and known facts to support mental calculations. I can add the 100s mentally. $200+300=500$ So, $4,256+300=4,556$	Use unitising and known facts to support mental calculations. $\begin{aligned} & 4,256+300=? \\ & 2+3=5 \quad 200+300=500 \\ & 4,256+300=4,556 \end{aligned}$

Learning Trust

Column addition with exchange	Use place value equipment on a place value grid to organise thinking. Ensure that children understand how the columns relate to place value and what to do if the numbers are not all 4-digit numbers. Use equipment.to show 1,905 + 775.
	Th H T O
	Why have only three columns been used for the second row? Why is the Thousands box empty? Which columns will total 10 or more?

Use place value equipment to model required exchanges.

©

(
Include examples that exchange in more than one column.

Use a column method to add, including exchanges.

\[

\]

$$
\begin{array}{rr|r|r}
\text { Th } & \mathrm{H} & \mathrm{~T} & \mathrm{O} \\
\hline 1 & 5 & 5 & 4 \\
+4 & 2 & 3 & 7 \\
\hline & & \mathrm{q} & \mathrm{I} \\
\hline & & &
\end{array}
$$

Th	H	T	O
1	5	5	4
+4	2	3	7
	7	9	1
	1		

Th	H	T	O
I	5	5	4
4	2	3	7
5	7	9	1

Include examples that exchange in more than one column.

Learning Trust

Bar models may be used to represent additions in problem contexts, and to justify mental methods where appropriate.

1,373	
799	574

I chose to work out $574+800$, then subtract 1.

6,000

2,999
3,001

Use rounding and estimating on a number line to check the reasonableness of an addition.
$0 \quad 1,0002,000$ 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000
$912+6,149=?$

I used rounding to work out that the answer should be approximately $1,000+6,000=7,000$.

	CONCRETE	PICTORIAL	ABSTRACT
Column addition with whole numbers	Use place value equipment to represent additions. Add a row of counters onto the place value grid to show 15, $735+4,012$.	Represent additions, using place value equipment on a place value grid alongside written methods. I need to exchange 10 tens for a 100.	Use column addition, including exchanges.
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. I will use $23,000+8,000$ to check.

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m. How long are they when added together? 0.6 m 0.2 m 	Use a bar model with a number line to add tenths. $0.6+0.2=0.8$ 6 tenths +2 tenths $=8$ tenths	Understand the link with adding fractions. $\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & \mathbf{6} \text { tenths }+\mathbf{2} \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $$ Include examples where the numbers of decimal places are different.	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 2 \% \\ +0 \cdot 4 \quad 5 \\ \hline 0 \cdot 6 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $$ Include additions where the numbers of decimal places are different. $3.4+0.65=?$ $\begin{array}{r} \mathrm{O} \cdot \text { Tth Hth } \\ \hline 3 \cdot 4 \quad 0 \\ +0 \cdot 6 \quad 5 \\ \hline \end{array}$

Maths Mastery Policy

