Reception:
EHLT are implementing Mastering Number at Reception in September 2024.
The programme aims to secure firm foundations in the development of good number sense for all children from Reception through to Year 1 and Year 2. The aim over time is that children will leave KS1 with fluency in calculation and a confidence and flexibility with number. Attention will be given to key knowledge and understanding needed in Reception classes, and progression through KS1 to support success in the future. Over the year, the children will experience using a range of resources and representations.

Research shows that children with secure 'number sense' early on will make more progress later on in maths and across the curriculum.

MULTIPLICATION KEY VOCABULARY					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Groups of; lots of; times; array; altogether; multiply; count	Groups of; lots of; times; array; altogether; multiply; count; multiplied by; repeated addition; factor	Groups of; lots of; times; array; altogether; multiply; count; multiplied by; repeated addition; column; row; commutative; sets of; equal groups; times as big as; once, twice, three times..; product; factor; grid method	Groups of; lots of; times; array; altogether; multiply; count; multiplied by; repeated addition; column; row; commutative; sets of; equal groups; times as big as; once, twice, three times..; product; factor; grid method; multiple; tens; ones; value; factor pair; approximate	Groups of; lots of; times; array; altogether; multiply; count; multiplied by; repeated addition; column; row; commutative; sets of; equal groups; times as big as; once, twice, three times..; product; factor; grid method; multiple; tens; ones; value; factor pair; approximate; integer; decimal; short/long multiplication; regroup	Groups of; lots of; times; array; altogether; multiply; count; multiplied by; repeated addition; column; row; commutative; sets of; equal groups; times as big as; once, twice, three times..; product; factor; grid method; multiple; tens; ones; value; factor pair; approximate; integer; decimal; short/long multiplication; regroup; tenths; hundredths

*This vocabulary is not an exhaustive list. Teachers will use recommended NCETM vocabulary in lessons.

| Making
 doubles | Children explore doubles in their environment including in games such
 as on dominoes or dice. They focus on the understanding of doubles
 being 2 equal groups. |
| :--- | :--- | :--- |
| Children use five frames to find doubles by lining up counters or | |
| cubes. | |
| Double 4 is 8. | |
| Double 2 is 4. | |
| Double 3 is 6. | |

	CONCRETE	PICTORIAL	ABSTRACT
Recognising and making equal groups	Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. A B C	Children draw and represent equal and unequal groups.	Three equal groups of 4. Four equal groups of 3.
Finding the total of equal groups by counting in 2s, 5s and 10s	There are 5 pens in each pack ... 5...10...15...20...25...30...35...40...	100 squares and ten frames support counting in $\mathbf{2 s}$, 5 s and 10 s .	Use a number line to support repeated addition through counting in $\mathbf{2 s}$, 5 s and 10 s.

	CONCRETE	PICTORIAL	ABSTRACT
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication.	Use a number line and write as repeated addition and as multiplication. $\begin{aligned} & 5+5+5=15 \\ & 3 \times 5=15 \end{aligned}$
Using arrays to represent multiplication and support understanding	Understand the relationship between arrays, multiplication and repeated addition. 1RMRM价价 4 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. 4 groups of 5 ... 5 groups of 5	Understand the relationship between arrays, multiplication and repeated addition. $5 \times 5=25$
Understanding commutativity	Use arrays to visualise commutativity. I can see 6 groups of 3 . I can see 3 groups of 6 .	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2.	Use arrays to visualise commutativity. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$

Learning Trust

	CONCRETE	PICTORIAL	ABSTRACT				
Understanding equal grouping and repeated addition	Children continue to build understanding of equal groups and the relationship with repeated addition. They recognise both examples and nonexamples using objects. Children recognise that arrays can be used to model commutative multiplications. I can see 3 groups of 8. I can see 8 groups of 3 .	Children recognise that arrays demonstrate commutativity. This is 3 groups of 4. This is $\mathbf{4}$ groups of 3 .	Children understand the link between repeated addition and multiplication. 8 groups of 3 is 24. $\begin{aligned} & 3+3+3+3+3+3+3+3=24 \\ & 8 \times 3=24 \end{aligned}$ A bar model may represent multiplications as equal groups.				

Using commutativity to support understanding of the timestables	Understand how to use times-tables facts flexibly. There are 6 groups of 4 pens. There are 4 groups of 6 bread rolls. I can use $6 \times 4=24$ to work out both totals.	Understand how times-table facts relate to commutativity. $\begin{aligned} & 6 \times 4=24 \\ & 4 \times 6=24 \end{aligned}$	Understand how times-table facts relate to commutativity. I need to work out 4 groups of 7. 1 know that $7 \times 4=28$ so, I know that 4 groups of $7=28$ and 7 groups of $4=28$.
Understanding and using $\times 3$, $\times 2, \times 4$ and $\times 8$ tables.	Children learn the times-tables as 'groups of', but apply their knowledge of commutativity. I can use the $\times 3$ table to work out how many keys. I can also use the $\times 3$ table to work out how many batteries.	Children understand how the $\times 2, \times 4$ and $\times 8$ tables are related through repeated doubling.	Children understand the relationship between related multiplication and division facts in known times-tables. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 10 \div 5=2 \\ & 10 \div 2=5 \end{aligned}$

	CONCRETE	PICTORIAL	ABSTRACT
Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. $3 \times 4=12$ $3 \times 40=120$ $3 \times 400=1,200$	Use known facts and understanding of place value and commutativity to multiply mentally. $\begin{aligned} & 4 \times 7=28 \\ & 4 \times 70=280 \\ & 40 \times 7=280 \end{aligned}$ $\begin{aligned} & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$
Understanding times-tables up to 12×12	Understand the special cases of multiplying by 1 and 0 . $5 \times 1=5$ $5 \times 0=0$	Represent the relationship between the $\times 9$ table and the $\times 10$ table. Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$ $4 \times 12=40+8$	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table / know that $7 \times 5=35$ so $/$ know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $6 \times 10=60$ $6 \times 9=60-6$

Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2. $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 5=20 \\ & 12+20=32 \\ & 4 \times 8=32 \end{aligned}$	Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$ $\begin{aligned} 18 \times 6 & =10 \times 6+8 \times 6 \\ & =60+48 \\ & =108 \end{aligned}$
Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 4×136 using equipment. I can work out how many 1s, 10s and 100s. There are 4×6 ones... 24 ones There are 4×3 tens ... 12 tens There are 4×1 hundreds ... 4 hundreds $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to 3-digit numbers by a single digit.	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.

	CONCRETE	PICTORIAL	ABSTRACT
Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10, 100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10.	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$

Multiplying by multiples of 10,100 and 1,000	Use place value equipment to explore multiplying by unitising. 5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	Use place value equipment to represent how to multiply by multiples of 10,100 and 1,000 .			Use known facts and unitising to multiply.$\begin{aligned} & 5 \times 4=20 \\ & 5 \times 40=200 \\ & 5 \times 400=2,000 \\ & 5 \times 4,000-20,000 \\ & \\ & 5,000 \times 4=20,000 \end{aligned}$		
Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17=?$ $8 \times 10=80$ $80+56=136$ So, $8 \times 17=136$ $8 \times 7=56$	Represe equipme 100s, th	multiplicatio and add the ,000s. (10)(10)(10)(10)(10) (10) (10)(10)(10)(10) 10 (10) (10)(10)(10)(10) 10 (10) (10)(10)(10)(10) (10)	ns using place value 1 s , then 10 s , then	Use an area mod Use a column required exch $\begin{array}{r} 136 \\ \times \quad 6 \\ \hline 816 \\ \hline 23 \end{array}$	el and then $\frac{60}{60 \times 5=300}$ Itiplication, ges.	the parts. $\frac{3}{3 \times 5=15}$ luding any

Multiplying 2digit numbers by 2-digit numbers	Partition one number into 10s and 1s, then add the parts. $23 \times 15=?$ $10 \times 15=150$ प제제 $3 \times 15=45$ There are 345 bottles of milk in total. $\begin{array}{rrr} H & T & O \\ \hline 1 & 5 & 0 \\ 1 & 5 & 0 \\ + & 4 & 5 \\ \hline 3 & 4 & 5 \\ \hline 1 & & \end{array}$ $23 \times 15=345$	Use 28 10 m 5 m 28	area model =? \square 20 m $20 \times 10=200 \mathrm{~m}^{2}$ $20 \times 5=100 \mathrm{~m}^{2}$ $=420$	dd the parts $\begin{gathered} 8 \mathrm{~m} \\ 8 \times 10=80 \mathrm{~m}^{2} \\ 8 \times 5=40 \mathrm{~m}^{2} \end{gathered}$	$\begin{array}{rrr} \mathrm{H} & \mathrm{~T} & \mathrm{O} \\ \hline 2 & 0 & 0 \\ 1 & 0 & 0 \\ & 8 & 0 \\ + & 4 & 0 \\ \hline 4 & 2 & 0 \\ \hline \end{array}$	Use column multiplication, ensuring understanding of place value at each stage.

Multiplying up to 4-digits by 2-digits

$143 \times 12=1,716$

Progress to include examples that require multiple exchanges as understanding, confidence and fluency build.
$1,274 \times 32=$?
First multiply 1,274 by 2.
\qquad $1,274 \times 2$

Then multiply 1,274 by 30.

Finally, find the total.

	1	2	7	4	
\times			3	2	
	2	5	4	8	
3	8	2	2	0	$1,274 \times 2$
$1,274 \times 30$					
4	0	7	6	8	$1,274 \times 32$
1					
$1,274 \times 32$	$=40,768$				

Multiplying
decimals by
10,100 and
1,000

Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths.

Represent multiplication by 10 as exchange on a place value grid.

Understand how this exchange is represented on a place value chart.

	Th	H	T	0	-	Tth
				2	-	
$2.5 \times 10=25$			2	5	-	
$2.5 \times 100=250$		2	5	0	-	
$2 \cdot 5 \times 1,000=2,500$	2	5	0	0	-	

