Reception:

EHLT are implementing Mastering Number at Reception in September 2024.

The programme aims to secure firm foundations in the development of good number sense for all children from Reception through to Year 1 and Year 2. The aim over time is that children will leave KS1 with fluency in calculation and a confidence and flexibility with number. Attention will be given to key knowledge and understanding needed in Reception classes, and progression through KS1 to support success in the future. Over the year, the children will experience using a range of resources and representations.

Research shows that children with secure 'number sense' early on will make more progress later on in maths and across the curriculum.

SUBTRACTION KEY VOCABULARY					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Equal to; take; take away; take from; less; minus; subtract; leaves; how many more; how many fewer; less than; most; least; count back; how many left; how much less is..	Equal to; take; take away; take from; less; minus; subtract; leaves; distance between; difference between; how many more; how many fewer; less than; most; least; count back; how many left; how much less is..; difference; count on; strategy; partition; tens; ones	Equal to; take; take away; take from; less; minus; subtract; leaves; distance between; difference between; how many more; how many fewer; less than; most; least; count back; how many left; how much less is..; difference; count on; strategy; partition; tens; ones; taking; decrease; hundreds; value; digit	Equal to; take; take away; take from; less; minus; subtract; leaves; distance between; difference between; how many more; how many fewer; less than; most; least; count back; how many left; how much less is..; difference; count on; strategy; partition; tens; ones; taking; decrease; hundreds; value; digit; inverse; thousand; exchanges; regroup	Equal to; take; take away; take from; less; minus; subtract; leaves; distance between; difference between; how many more; how many fewer; less than; most; least; count back; how many left; how much less is..; difference; count on; strategy; partition; tens; ones; taking; decrease; hundreds; value; digit; inverse; thousand; exchanges; regroup; tenths; hundredths; decimal point; decimal	Equal to; take; take away; take from; less; minus; subtract; leaves; distance between; difference between; how many more; how many fewer; less than; most; least; count back; how many left; how much less is..; difference; count on; strategy; partition; tens; ones; taking; decrease; hundreds; value; digit; inverse; thousand; exchanges; regroup; tenths; hundredths; decimal point; decimal

*This vocabulary is not an exhaustive list. Teachers will use recommended NCETM vocabulary in lessons.

OTHER REPRESENTATION

	REAL-LIFE REPRESENTATION	OTHER REPRESENTATION
Comparing groups	Children line up objects to compare the amount. They line the objects up either horizontally or vertically. Ella has more conkers. Tom has fewer conkers.	Children line up cubes or counters to compare the amount in each group. Lines can either be horizontal or vertical. A starting line helps to line the objects accurately. There are more yellow cubes. There are fewer red cubes.

	The other part is the	
Finding number bonds to 10	Children partition 10 into different groups to find the number bonds to 10. Children begin to work with subtraction number bonds. They break apart 10 to identify different number bonds to 10. 10 are bouncing. 2 get off. 8 are left.	Children use part-whole models, ten frames and counters to find the number bonds to 10. 10 is the whole. 5 is a part and 5 is a part.
		Children use part-whole models, and counters to find missing parts and the subtraction number bonds to 10.
		The parts are 8 and 2. 10 is the whole.

	10-2 = 8	
Counting back and taking away (number track)	Children use game boards and human number tracks to subtract by counting back. 9 take away 3 equals 6 9...8...7... 6	Children use a number track and a counter. They start at the larger number and count back the smaller number to find the answer. 9 take away 3 equals 6 9...8...7... 6
Counting back and taking away (ten frames)	Children count backwards to find one less with numbers up to 20. One less than 16 is 15.	Children remove counters from ten frames to support in counting back with numbers up to 20. One less than 16 is 15.

	CONCRETE	PICTORIAL	ABSTRACT
Counting back and taking away	Children arrange objects and remove to find how many are left. 1 less than 6 is 5. 6 subtract 1 is 5 .	Children draw and cross out or use counters to represent objects from a problem.	Children count back to take away and use a number line or number track to support the method. $9-3=6$
Finding a missing part, given a whole and a part	Children separate a whole into parts and understand how one part can be found by subtraction. $8-5=?$	Children represent a whole and a part and understand how to find the missing part by subtraction. $5-4=\square$	Children use a part-whole model to support the subtraction to find a missing part. $7-3=?$ Children develop an understanding of the relationship between addition and subtraction facts in a part-whole model.

Finding the difference	Arrange two groups so that the difference between the groups can be worked out. 8 is 2 more than 6. 6 is 2 less than 8. The difference between 8 and 6 is 2.	Represent objects using sketches or counters to support finding the difference. $5-4=1$ The difference between 5 and 4 is 1.	Children understand 'find the difference' as subtraction. $10-4=6$ The difference between 10 and 6 is 4.
Subtraction within 20	Understand when and how to subtract 1s efficiently. Use a bead string to subtract 1s efficiently. $\begin{gathered} 5-3=2 \\ 15-3=12 \end{gathered}$	Understand when and how to subtract 1s efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$	Understand how to use knowledge of bonds within 10 to subtract efficiently. $\begin{aligned} & 5-3=2 \\ & 15-3=12 \end{aligned}$
Subtracting 10s and 1s	For example: 18-12 Subtract 12 by first subtracting the 10, then the remaining 2.	For example: 18-12 Use ten frames to represent the efficient method of subtracting 12.	Use a part-whole model to support the calculation.

	$\begin{aligned} & 2,2,2,2,2,2,1,1,14 \\ & 2,2,2,2,2,1,1,1 \end{aligned}$ First subtract the 10, then take away 2.	First subtract the 10, then subtract 2.	19-14 $19-10=9$ $9-4=5$ So, 19 - 14 = 5
Subtraction bridging 10 using number bonds	For example: 12-7 Arrange objects into a 10 and some 1s, then decide on how to split the 7 into parts. 7 is 2 and 5, so $/$ take away the 2 and then the 5 .	Represent the use of bonds using ten frames. For 13 -5, I take away 3 to make 10, then take away 2 to make 8.	Use a number line and a part-whole model to support the method. $13-5$

YEAR 2 SUBRACTION

	CONCRETE	PICTORIAL	ABSTRACT
Subtracting multiples of 10	Use known number bonds and unitising to subtract multiples of 10. 8 subtract 6 is 2. So, 8 tens subtract 6 tens is $\mathbf{2}$ tens.	Use known number bonds and unitising to subtract multiples of 10. $10-3=7$ So, 10 tens subtract 3 tens is $\mathbf{7}$ tens.	Use known number bonds and unitising to subtract multiples of 10. 7 tens subtract 5 tens is 2 tens. $70-50=20$
Subtracting a single-digit number	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. This may be done in or out of a place value grid.	Subtract the 1s. Understand the link between counting back and subtracting the 1 s using known bonds. $\begin{array}{r} T \quad 0 \\ \hline 39 \\ -\quad 3 \\ \hline 36 \\ \hline \end{array}$ $9-3=6$

			39-3 $=36$
Subtracting a single-digit number bridging 10	Bridge 10 by using known bonds. $35-6$ I took away 5 counters, then 1 more.	Bridge 10 by using known bonds. $35-6$ First, I will subtract 5, then 1.	Bridge 10 by using known bonds. $\begin{aligned} & 24-6=? \\ & 24-4-2=? \end{aligned}$
Subtracting a single-digit number using exchange	Exchange 1 ten for 10 ones. This may be done in or out of a place value grid.	Exchange 1 ten for 10 ones.	Exchange 1 ten for 10 ones.

Maths Mastery Policy

number using place value and columns	T 0 .88300 $00 \varnothing \varnothing$ 88300 $\varnothing \varnothing \varnothing \varnothing$ $\boxed{820}$ $38-16=22$			T O 4 5 -1 2 3 T 0 4 5 -1 2 3 3	
Subtracting a 2-digit number with exchange		Exchange 1 ten for 10 ones. Then subtract the $\mathbf{1 s}$. Then subtract the 10 s.		Using column subtraction, exchange 1 ten for 10 ones. Then subtract the 1 s . Then subtract the $\mathbf{1 0 s}$.	$\begin{array}{r} 10 \\ \hline 45 \\ -27 \\ \hline \end{array}$
					$\begin{array}{r}T \quad 0 \\ \hline{ }^{3} 415 \\ -27 \\ \hline\end{array}$
					$\begin{array}{r}10 \\ \hline 3 / 415 \\ -27 \\ \hline 88 \\ \hline\end{array}$
					$\begin{array}{r}1 \\ \hline\end{array}$

YEAR 3 SUBRACTION

	$381-10=?$ 8 tens with 1 removed is 7 tens． $381-10=371$	$\begin{aligned} & 8 \text { tens }-1 \text { ten = } 7 \text { tens } \\ & 381-10=371 \end{aligned}$	
3－digit number－10s， exchange or bridging required	Use equipment to understand the exchange of 1 hundred for 10 tens．	Represent the exchange on a place value grid using equipment． $210-20=?$ I need to exchange 1 hundred for 10 tens，to help subtract 2 tens． $210-20=190$	Understand the link with counting back on a number line． Use flexible partitioning to support the calculation． $235-60=?$ $\begin{aligned} 235 & =100+130+5 \\ 235-60 & =100+70+5 \\ & =175 \end{aligned}$

		Team A 454 Team B $128 \longleftarrow ?$ Bar models can also be used to show that a part must be taken away from the whole.	Children use inverse operations to check additions and subtractions. The part-whole model supports understanding. I have completed this subtraction. $525-270=255$ I will check using addition.	$\begin{array}{r} H T O \\ \hline 270 \\ +255 \\ \hline 525 \\ \hline \end{array}$

YEAR 4 SUBRACTION

	CONCRETE	PICTORIAL	ABSTRACT
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. $2,250-1,070$	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required.$15,735-2,582=13,153$TTh Th H T O 00000 $000 \varnothing$$\qquad$ Now subtract the 10 s. Exchange I hundred for 10 tens. Subtract the $100 \mathrm{~s}, 1,000$ s and $10,000 \mathrm{~s}$.	Use column subtraction methods with exchange where required. $62,097-18,534=43,563$
Checking strategies and representing subtractions		Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly. Use approximation to check calculations. I calculated 18,000 + 4,000 mentally to check my subtraction.

Learning Trust

